其他
新闻详情

了解自动光学检测(AOI、MVI、AVI)技术

发布时间:2023-10-19 10:51:02 最后更新:2023-10-19 10:57:06 浏览次数:9861

在产品制造过程中,由于各种原因,零部件不可避免的会产生多种缺陷,如印制电路板上出现孔错位、划伤、断路、短路、污染等缺陷,液晶面板的基板玻璃和滤光片表面含有针孔、划痕、颗粒、mura等缺陷,带钢表面产生裂纹、辊印、孔洞、麻点等缺陷,这些缺陷不仅影响产品的性能,严重时甚至会危害到生命安全,对用户造成巨大经济损失。

传统缺陷检测方法为人工目视检测法,目前在手机、平板显示、太阳能、锂电池等诸多行业,仍然有大量的产业工人从事这项工作。这种人工视觉检测方法需要在强光照明条件下进行,不仅对检测人员的眼睛伤害很大,且存在主观性强、人眼空间和时间分辨率有限、检测不确定性大、易产生歧义、效率低下等缺点,已很难满足现代工业高速、高分辨率的检测要求。

随着电子技术、图像传感技术和计算机技术的快速发展,利用基于光学图像传感的表面缺陷自动光学(视觉)检测技术取代人工目视检测表面缺陷,已逐渐成为表面缺陷检测的重要手段,因为这种方法具有自动化、非接触、速度快、精度高、稳定性高等优点。

什么是AOI

自动光学检测(automatedopticalinspection,AOI)技术,也称为机器视觉检测(machinevisioninspection,MVI)技术或自动视觉检测(automatedvisualinspection,AVI)技术。在有些行业,如平板显示、半导体、太阳能等制造行业,AOI这一术语更加流行,被人知晓。但是AOI和MVI/AVI在概念和功能上还是有细微差别的。

从狭义上来说,MVI是一种集成了图像传感技术、数据处理技术、运动控制技术,在工业生产过程中,执行测量、检测、识别和引导等任务的一种新兴的科学技术。MVI的基本原理可用图1来表示,它采用光学成像方法(如相机,或者一个复杂的光学成像系统)模拟人眼的的视觉成像功能,用计算机处理系统代替人脑执行数据处理,最后把结果反馈给执行机构(如机械手)代替人手完成各种规定的任务。

图1  MVI基本原理与功能

从广义上来说,MVI是一种模拟和拓展人类眼、脑、手的功能的一种技术,在不同的应用领域其定义可能有着细微的差别,但都离开不了两个根本的方法与技术,即从图像中获取所需信息,然后反馈给自动化执行机构完成特定的任务。可以说基于任何图像传感方法(如可见光成像、红外成像、X光成像、超声成像等等)的自动化检测技术都可以认为是MVI或AVI。当采用光学成像方法时,MVI实际上就变为AOI。因此AOI可以认为是MVI的一种特例。

根据成像方法的不同,AOI又可分为三维(3D)AOI和二维(2D)AOI,三维AOI主要用于物体外形几何参数的测量、零件分组、定位、识别、机器人引导等场合;二维AOI主要用于产品外观(色彩、缺陷等)检测、不同物体或外观分类、良疵品检测与分类等场合。

AOI系统组成

目前在产业界用得最多的AOI系统是由相机、镜头、光源、计算机等通用器件集成的简单光学成像与处理系统。如图1所示,在光源照明下利用相机直接成像,然后由计算机处理实现检测。这种简单系统的优点是成本低、集成容易、技术门槛相对不高,在制造过程中能够代替人工检测,满足多数场合的要求。

但对于大幅面或复杂结构物体的视觉检测,由于受到视场和分辨率(或精度)的相互制约,或生产节拍对检测速度有特殊的要求,单相机组成的AOI系统有时难以胜任,因此可能需要有多个基本单元集成在一起,协同工作,共同完成高难度检测任务。即采取一种多传感器成像、高速分布式处理的AOI系统集成架构。

图2   多传感器成像、高速分布式处理的MVI系统集成架构

图2给出了一种大幅面表面缺陷AOI检测系统的通用架构,该系统由光源,相机阵列、显微复检、集群并行处理系统、控制系统、主控计算机、服务器组成,以及与工厂数据中心互联的工业局域网组成。该系统架构具有大幅面表面缺陷低分辨率快速检出和高分辨率显微复检两种功能。从图中可以看出,完整的AOI系统不仅集成了照明与光学成像单元,还需要有被测件支撑传输单元、精密运动机构与控制单元、高速并行图像处理单元等。

AOI系统集成技术

AOI系统集成技术牵涉到关键器件、系统设计、整机集成、软件开发等。AOI系统中必不可少的关键器件有图像传感器(相机)、镜头、光源、采集与预处理卡、计算机(工控机、服务器)等。图像传感器最常用的是各种型号的CMOS/CCD相机,图像传感器、镜头、光源三者组合构成了大多数自动光学检测系统中感知单元,器件的选择与配置需要根据检测要求进行合计设计与选型。

光源的选择(颜色、波长、功率、照明方式等)除了分辨与增强特征外,还需考虑图像传感器对光源光谱的灵敏度范围。镜头的选择需要考虑视场角、景深、分辨率等光学参数,镜头的光学分辨率要和图像传感器的空间分辨率匹配才能达到最佳的性价比。一般情况下,镜头的光学分辨率略高于图像传感器的空间分辨率为宜,尽可能采用黑白相机成像,提高成像分辨能力。图像传感器(相机)采用面阵或线阵需根据具体情况而定,选型时需要考虑的因素有成像视场、空间分辨率、最小曝光时间、帧率、数据带宽等。对于运动物体的检测,要考虑图像运动模糊带来的不利影响,准确计算导致运动模糊的最小曝光时间,确定图像传感器的型号。图像传感器的曝光时间应小于导致运动模糊的最小曝光时间,快速曝光选择全局快门模式为宜,高速情况下不易采用卷帘式曝光模式;为了获得最佳的信噪比,图像传感器的增益尽可能为1,图像亮度的提升尽可能用光源的能量(功率)来弥补,或者在不影响可用的成像景深情况下,增大镜头的孔径光阑。

在系统集成中,被测件的支撑方式、精密传输与定位装置也必须精心设计,这牵涉到精密机械设计技术,这对平板显示、硅片、半导体和MEMS等精密制造与组装产业中的自动光学检测系统非常重要。在这些领域,制造过程通常在超净间进行,要求自动光学检测系统具有很高的自洁能力,对系统构件的材料选型、气动及自动化装置选型、运动导轨的设计与器件选型都有严格要求,不能给生产环境尤其是被测工件本身带来二次污染。尤其是用于表面缺陷检测的AOI系统不能在检测过程中,给被测件表面带来缺陷(如粉尘、划伤、静电等)。因此,对于大型零件(如高世代的液晶玻璃基板、硅片等)的在线检测,常常需要采取气浮支撑、定位与传输机构,运动部件(如轴承等)采用自润滑器件,以及利用FFU风机过滤机组对检测系统进行环境净化,并采取消静电装置,对工件进行防静电处理。

高速图像数据处理与软件开发是自动光学检测的核心技术。由于自动光学检测是以图像传感获取被测信息,数据量大,尤其是高速在线检测,图像数据有时是海量的,为满足生产节拍需求,必须采用高速数据处理技术。常用的方法有共享内存式的多线程处理,共享内存或分布式内存多进程处理等;在系统实现上采用分布式计算机集群,把巨大的图像分时、分块分割成小块数据流,分散到集群系统各节点处理。对于耗时复杂的算法,有时仅靠计算机CPU很难满足时间要求,这时还需配备硬件处理技术,如采用DSP、GPU和FPGA等硬件处理模块,与CPU协同工作,实现快速复杂的计算难题。


总结

近几年来,尤其我国2015年发布《中国制造2025》发展战略以来,用机器代替人,即采用机器视觉或自动光学检测代替人工视觉,实现产品零部件制造质量在线高效自动检测和品质控制,得到诸多行业的青睐。AOI技术目前广泛应用于工业、农业、生物医疗等行业,尤其在精密制造与组装行业,如手机、液晶面板、硅片、印制电路板等领域,2DAOI表面缺陷技术发展异常迅速,各种高新技术检测装备层出不穷。

深圳市双翌光电科技有限公司是一家以机器视觉为技术核心,自主技术研究与应用拓展为导向的高科技企业。公司自成立以来不断创新,在智能自动化领域研发出视觉对位系统、视觉定位、视觉检测、图像处理库等为核心的多款自主知识产权产品。涉及自动贴合机、丝印机、曝光机、叠片机、贴片机、智能检测、智能镭射等众多行业领域。双翌视觉系统最高生产精度可达um级别,图像处理精准、速度快,将智能自动化制造行业的生产水平提升到一个更高的层次,改进了以往落后的生产流程,得到广大用户的认可与肯定。随着智能自动化生产的普及与发展,双翌将为广大生产行业带来更全面、更精细、更智能化的技术及服务。

在线客服 双翌客服
客服电话
  • 0755-23712116
  • 13822267203