热线电话:0755-23712116
邮箱:contact@shuangyi-tech.com
地址:深圳市宝安区沙井街道后亭茅洲山工业园工业大厦全至科技创新园科创大厦2层2A
本文整理了图像处理初学者应该需要了解的100个基础问题,涉及读取、显示图像、操作像素、拷贝图像、保存图像、灰度化(Grayscale)、二值化(Thresholding)、大津算法、HSV 变换、减色处理、平均池化(Average Pooling)、最大池化(Max Pooling)、高斯滤波(Gaussian Filter)、中值滤波(Median filter)、仿射变换(Afine Transformations)等100多个知识点。
给出了详细的代码实现,具体的输入输出case情况。
内容整理自:
https://github.com/gzr2017/ImageProcessing100Wen
問題1 - 10
1通道替换
2灰度化(Grayscale)
3二值化(Thresholding)
4大津算法
5HSV 变换
6减色处理
7平均池化(Average Pooling)
8最大池化(Max Pooling)
9高斯滤波(Gaussian Filter)
10中值滤波(Median filter)
问题11 - 20
11均值滤波
12Motion Filter
13MAX-MIN 滤波
14微分滤波
15Sobel 滤波
16Prewitt 滤波
17Laplacian 滤波
18Emboss 滤波
19LoG 滤波
20直方图表示
问题21-30
21直方图归一化(Histogram Normalization)
22直方图操作
23直方图均衡化(Histogram Equalization)
24伽玛校正(Gamma Correction)
25最邻近插值(Nearest-neighbor Interpolation)
26双线性插值(Bilinear Interpolation)
27双三次插值(Bicubic Interpolation)
28仿射变换(Afine Transformations)——平行移动
29仿射变换(Afine Transformations)——放大缩小
30仿射变换(Afine Transformations)——旋转
问题31-40
31仿射变换(Afine Transformations)——倾斜
32傅立叶变换(Fourier Transform)
33傅立叶变换——低通滤波
34傅立叶变换——高通滤波
35傅立叶变换——带通滤波
36JPEG 压缩——第一步:离散余弦变换(Discrete Cosine Transformation)
37峰值信噪比(Peak Signal to Noise Ratio)
38JPEG 压缩——第二步:离散余弦变换+量化
39JPEG 压缩——第三步:YCbCr 色彩空间
40JPEG 压缩——第四步:YCbCr+DCT+量化
问题41-50
41Canny边缘检测:第一步——边缘强度
42Canny边缘检测:第二步——边缘细化
43Canny边缘检测:第三步——滞后阈值
44霍夫变换(Hough Transform)/直线检测——第一步:霍夫变换
45霍夫变换(Hough Transform)/直线检测——第二步:NMS
46霍夫变换(Hough Transform)/直线检测——第三步:霍夫逆变换
47形态学处理:膨胀(Dilate)
48形态学处理:腐蚀(Erode)
49开运算(Opening Operation)
50闭运算(Closing Operation)
问题51-60
51形态学梯度(Morphology Gradient)
52顶帽(Top Hat)
53黑帽(Black Hat)
54使用误差平方和算法(Sum of Squared Difference)进行模式匹配(Template Matching)
55使用绝对值差和(Sum of Absolute Differences)进行模式匹配
56使用归一化交叉相关(Normalization Cross Correlation)进行模式匹配
57使用零均值归一化交叉相关(Zero-mean Normalization Cross Correlation)进行模式匹配
584-邻接连通域标记
598-邻接连通域标记
60透明混合(Alpha Blending)
问题61-70
614-邻接的连接数
628-邻接的连接数
63细化处理
64Hilditch 细化算法
65Zhang-Suen 细化算法
66方向梯度直方图(HOG)第一步:梯度幅值・梯度方向
67方向梯度直方图(HOG)第二步:梯度直方图
68方向梯度直方图(HOG)第三步:直方图归一化
69方向梯度直方图(HOG)第四步:可视化特征量
70色彩追踪(Color Tracking)
问题71-80
71掩膜(Masking)
72掩膜(色彩追踪(Color Tracking)+形态学处理)
73缩小和放大
74使用差分金字塔提取高频成分
75高斯金字塔(Gaussian Pyramid)
76显著图(Saliency Map)
77Gabor 滤波器(Gabor Filter)
78旋转 Gabor 滤波器
79使用 Gabor 滤波器进行边缘检测
80使用 Gabor 滤波器进行特征提取
问题81-90
81Hessian 角点检测
82Harris 角点检测第一步:Sobel + Gausian
83Harris 角点检测第二步:角点检测
84简单图像识别第一步:减色化+直方图
85简单图像识别第二步:判别类别
86简单图像识别第三步:评估
87简单图像识别第四步:k-NN
88k-平均聚类算法(k -means Clustering)第一步:生成质心
89k-平均聚类算法(k -means Clustering)第二步:聚类
90k-平均聚类算法(k -means Clustering)第三步:调整初期类别
问题91-100
91利用 k-平均聚类算法进行减色处理第一步:按颜色距离分类
92利用 k-平均聚类算法进行减色处理第二步:减色处理
93准备机器学习的训练数据第一步:计算 IoU
94准备机器学习的训练数据第一步:随机裁剪(Random Cropping)
95神经网络(Neural Network)第一步:深度学习(Deep Learning)
96神经网络(Neural Network)第二步:训练
97简单物体检测第一步----滑动窗口(Sliding Window)+HOG
98简单物体检测第二步----滑动窗口(Sliding Window)+ NN
99简单物体检测第三步----非极大值抑制(Non-Maximum Suppression)
100简单物体检测第三步----评估 Precision, Recall, F-score, mAP