视觉应用
新闻详情

机器视觉SMD芯片字符缺陷检测

发布时间:2023-01-05 17:09:50 最后更新:2023-02-07 09:58:57 浏览次数:877

        检测系统由工业相机、工业镜头、图像采集卡、工业光源、起偏震片、PC机以及机械结构和机械传动等构成。通过检测精度、检测速度、视野范围、工作距离、工件尺寸来选取合适的工业相机和工业镜头。通过数据传输的大小进行图像采集,本文采用漫反射条形组合光源。为了提高字符与背景的对比度,降低辐照与辐射强度,采用起振片和偏振片。起振片可以将光源发出来的光变成偏振光,放置于光源位置处;偏振片安装于工业相机镜头前,对偏振光进行一定的遮蔽,偏振光经过漫反射后将变成自然光,经过镜面发射后仍然是偏振光。打光方式采用正面明视场。根据测试分选机工位条件的限制,将光源布置在芯片的正上方,通过螺纹丝杆调节光源距SMD芯片的距离。

 

再来看看SMD检测系统算法设计

       SMD字符在线实时检测对检测速度和检测精度有较高的要求,包括字符定位、字符分割、字符匹配在实时性上都有较高的要求。在PC机上,通过多线程技术提高CPU的利用率,提高系统的处理速度。本文利用设计定位块的方式来提高检测字符区域的效率,通过基于灰度方式的水平垂直投影进行字符的局部分割,利用基于图像采集结果和分割结果进行全局与局部模板匹配,以保证检测的精度。

1、字符定位 

        字符定位通过设计金属定位块的方式,利用金属材料在光源辐照下的辐射特性与SMD的差异性提高对比度来进行快速定位。

2、字符分割

       在进行字符分割之前,要进行SMD芯片的位姿矫正。SMD的欧式运动是先旋转、后平移的组合,所以可以用刚体运动来表示位姿。利用二值化图像的像素分布直方图进行分析,从而找出相邻字符的分界点进行分割。在利用垂直投影切分的方式进行字符切割的结果,如下图所示。


3、字符缺陷识别

       字符缺陷识别采用基于边缘特征的模板匹配。模板匹配的基本思想是让模板在目标图像中做平移运动,将模板左上角和待检测的图像左上角重合,每移动一个像素,计算模板与待匹配图像的相似度,遍历结束之后,将符合阈值的位置认定为最佳匹配位置。基于灰度的互相关模板匹配是通过用模板图像遍历待匹配图像,每移动一个像素,计算对应部分的互相关值,将互相关值的最大值作为最佳匹配位置。基于灰度的互相关模板匹配缺点是在光场不均匀情况下,不具有鲁棒性。归一化互相关系数法是一个亮度、对比度线性不变量,能够明显改善光照的线性变化带来的影响。但是随着图像分辨率的提高,图像匹配的时间会增加,匹配准确度也存在差异,甚至会发生匹配失效的情况,并且由于半导体芯片的位姿和完整性等存在差异,会引起光照的非线性变化,这会导致图像的灰度差异大,进而导致模板匹配结果不准确。较于基于灰度的互相关模板匹配,基于边缘的模板匹配不需要建立两幅图像之间点的对应关系,具有较好的鲁棒性。模板由目标图像边缘的一系列点组成,如下图。

       下面是基于边缘模板匹配对芯片表面字符的检测,下图左边是待检测的SMD字符,右边是匹配得到的结果。

 

       基于机器视觉的SMD字符检测技术在自动化识别领域的应用非常广泛。芯片表面的制造商、产品的规格型号参数等对于使用者来说十分重要。本文通过设计SMD专用定位块的方式解决字符搜索定位,通过投影切分来进行字符的分割,作为整体和局部字符匹配,提高字符检测的准确性,整体上在鲁棒性、实时性、准确性上能够满足企业字符识别的要求。

       深圳市双翌光电科技有限公司是一家以机器视觉为技术核心,自主技术研究与应用拓展为导向的高科技企业。公司自成立以来不断创新,在智能自动化领域研发出视觉对位系统、机械手视觉定位视觉检测、图像处理库等为核心的20多款自主知识产权产品。涉及自动贴合机、丝印机、曝光机、叠片机、贴片机、智能检测、智能镭射等众多行业领域。双翌视觉系统最高生产精度可达um级别,图像处理精准、速度快,将智能自动化制造行业的生产水平提升到一个更高的层次,改进了以往落后的生产流程,得到广大用户的认可与肯定。随着智能自动化生产的普及与发展,双翌将为广大生产行业带来更全面、更精细、更智能化的技术及服务。

在线客服 双翌客服
客服电话
  • 0755-23712116
  • 13822267203